
Abstract - Analyzing the human body by the application of
alternating electrical currents is not a widely known method in
medicine. In our research, we stimulated test persons by
exposing them to different low frequencies and measured their
responses to them. This method, known as FAM (Frequency
Analysis Method), can be used to estimate the physiological
condition of patients. In this study, we present a method of
processing the results using neural networks. By producing user-
friendly visual data, the processing method aids a
physiotherapist in the interpretation of the results, resulting in a
more reliable diagnosis.
Keywords - Physiotherapy, biomedical engineering, neural
networks, physiological condition, frequency analysis method,
FAM, SOM

I. INTRODUCTION

Various kinds of electrical measurements have been used to
investigate the human body, including the mechanical or
chemical stimulation of organs and tissues. Stimulation by
continuous wave alternating electrical currents, however, is
not a widely used method, although the body itself, and
especially the central nervous system, employs electrical
currents and impulses. A novel method known as FAM
(Frequency Analysis Method) was invented in Oulu [1] to
evaluate the physiological condition of the human body,
musculoskeletal disorders in particular.

In the Frequency Analysis Method, an alternating current is
fed into a patient’s wrists, ankles and back at a selected
frequency. The current's intensity is increased incrementally
and the patient's responses are registered as thresholds of
sensory, motoric and pain reactions. Repeating the procedure
at several frequencies (10 – 100 Hz) produces a set of FAM
data, capable of providing a wealth of information concerning
the patients’ physiological condition. 

This paper presents an analysis method for FAM data by
means of artificial neural networks utilizing Self-Organizing
Maps (SOMs) [2]. To test the method, FAM data from 96 test
persons were organized using a selected SOM. 

Neural networks are widely used in biomedical applications.
For example, they have been proposed for the automatic
detection of microcalcification clusters in mammograms [3].
In addition, neural networks can be used to support medical
decision-making by combining qualitative and quantitative
medical knowledge [4]. Our application is based on using a
SOM neural network to categorize FAM data by comparing it
to previous data and interpretations. 

II. METHODOLOGY

A. The measurement

Using the following procedure, the FAM data in our
measurements were obtained from five points; namely, the
patients' wrists, ankles and back.

The electrodes of an IF Electrotherapy unit [5] were attached
to the measurement location, and a physiotherapist switched
on an alternating current starting at the A Hz frequency at the
current level of 0 mA. Then, the therapist increased the
current incrementally and monitored the responses of the
patient, documenting thresholds of sensory, motoric and pain
reactions in terms of current values. The definitions of these
reactions were agreed on in advance. By repeating the process
at varying frequencies (in the experiments of the present
paper A = 10 Hz, B = 50 Hz and C = 100 Hz) in each
measurement location (both wrists, ankles and the back)
provides a full set of  FAM data for the patient. 

Table 1 shows FAM data measured from a patient's limb.
 

TABLE 1
EXAMPLE OF FAM DATA

A Hz B Hz C Hz
Sensory 11mA 12mA 14mA
Motoric 12mA 14mA 15mA

Pain 30mA 30mA 30mA

Current values in the different columns reveal the patient's
specific reactions to AC stimulation. The first value, 11mA,
defines the person's sensory threshold at A Hz, and represents
the person's “first feeling of the current”. The motoric
threshold is the point where the limb begins to react by
mechanical vibrations. The pain level represents the value at
which the patient experiences physical pain.

B. Expert analysis of the measurements

A physiotherapist who is experienced in the FAM method can
experimentally analyze FAM data quite accurately and give a
correct diagnosis. However, as the FAM is a new and
relatively unknown method, no reference values exist for the
measurements. The measurements typically produce nine or
more current values for each limb, rendering the definition of
reference values very hard by means of simple statistical
methods. Thus, a wider utilization of the method necessitates
an improved numerical analysis method.
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C. The new analysis method

To study the analysis of FAM data, 96 test persons were
measured, and medical experts diagnosed them into four
classes (healthy, fibromyalgic, back pain, neck pain). Table 2
shows the characteristics of the data.

TABLE 2
CHARACTERISTICS OF THE DATA

Subjects 96
Measurements total 224

 
 Distribution of measurements:

Right hand 67
Left hand 39
Right leg 75
Left leg 17
Back 26

Diagnoses
Healthy 96

Fibromyalgic 28
Back pain 80
Neck pain 20

As the table indicates, not all test persons were measured at
every location. That is a standard procedure in the FAM
method and is natural, because, for example, it is rarely
relevant to attempt to analyze the condition of a patient's leg
on the basis of hand measurements. However, the fact that
data from some measurement locations is missing makes the
analysis more demanding. Still, the method should be able to
produce reliable results from sparse data. 

To obtain maximum benefit from a FAM analysis in a
physiotherapeutical investigation, the interpretation of the
results should be clear and well-motivated to enable the
integration of the results with expert knowledge.

These reasons led to the idea of using Self-Organizing Maps
(SOMs) in the analysis of FAM data [2]. SOMs have the
advantage that they enable both analysis of and datamining in
such data where the important factors are not generally well
known.

Preprocessing

The data were preprocessed to an appropriate form bearing in
mind two specific considerations. First, the data were
processed such that possible associations with expert
knowledge relating to the FAM data could be easily handled
and the data could be properly fed to the SOM. The second
consideration involved the selection of preprocessing method
for the easy utilization of the data also in the absence of some
values.

With this in mind, the FAM data were preprocessed using
first order curve fitting. A FAM data matrix (Table 1) was
fitted to the current both as a function of frequency and of

reaction threshold (using the following indices 1=sensoric,
2=motoric, 3=pain). As a result of curve fitting, the FAM
measurement can be expressed as

� � threactthreact bthreactkthreactI __ __ ��� (1)

� � freqfreq bfrequencykfrequencyI ��� (2).

Equations 1 and 2 allow the responses of each current value
to be studied either as a function of frequency or of reaction
threshold. This is helpful in the physiological interpretation of
the FAM data. In addition, such fitting enables the utilization
of incomplete data.

A FAM analysis allows measurements also at other
frequencies and reaction thresholds than those used in this
study. The same parameters can be extracted from FAM data
using fitted functions, despite varying measuring frequencies
or reaction thresholds. This is useful, because the measuring
frequencies of the FAM method have not been fixed yet.

The data was preprocessed using functions (1) and (2), and
the fit of the errors was mA3.20�  (mean � SD) for function
(1) and mA3.10� (mean � SD) for function (2). As the error
level was relatively low (the measuring interval was 1 mA),
the preprocessing method was assumed to be sufficiently
accurate for parameterizing FAM data.

Neural network analysis

A Self-Organizing Map (SOM) defines mapping from the
input data onto a two-dimensional array of nodes. Every node
is associated with a reference vector � �Tiniiim ��� ,...,, 21� .
The nodes are arranged to a hexagonal lattice for
visualization purposes. An input vector � �nx ��� ,...,, 21� is
connected to all neurons in parallel via variable scalar
weights ij� . So, the input x is compared in parallel to all the

nodes im and the location of the best match is defined as the
location of the response.

The basic algorithm for the self-organization of the weight
vectors has the form [2]

� � � � � � � � � �� �tmtxthtmtm iciii ����1 (3)

where � �thci  is a neighborhood function, 

� �tmi  is a weight vector i in the SOM

 � �tx  is a training example and
 t=0, 1, 2, ... is a discrete-time index. 



The result of a SOM that has been taught using algorithm (3)
can be evaluated by defining the average expected distortion
measure (4) [2].

� �� � � �dxxpmxdfhE
i

ici��� ,   (4)

where 
� �imxd ,  is the quantification error, i.e., the

distance between x and m
 � �xp  is the probability density function of x.

The result of self-organization is a network with appropriate
weights � �tmi , which minimize function (4) for x. Two
important considerations entered into the training of the
SOM: the quantitative values of the data had to be
approximated and smoothly organized. In a very large
network, E equals zero, but its generalizability is poor, and
vice versa (in a small network the statistical confidence of the
weight im  will be high). Hence, the right result for the SOM
is a compromise between the two considerations.

The test persons were classified into four classes (healthy,
fibromyalgic, back pain, neck pain). The SOM was trained in
the supervised mode, meaning that every diagnosis was
included as a parameter in the training data. Finally, the self-
organized diagnosis parameters were used in the clustering of
the data.

III. RESULTS

To investigate the diagnostic power of the SOM neural
network in FAM data processing, a PC-based neural network
was built up using Matlab® software and a SOM Toolbox.
The FAM data obtained from the wrists of the 96 test persons
are presented in this report. 

The training of the SOM produced a network with reference
vectors � �Tiiiim 1521 ,...,, ���� . The first 12 dimensions
define the reference vector for the parameters of the FAM
data. The last 3 dimensions define the reference vector for the
diagnosis parameters. 

The resulting SOM can be visually interpreted such that the
last three dimensions of the reference vector im  are
compared to each other and the highest value is declared the
winner. This produces one diagnosis index per every node in
the SOM. The indices can be expressed visually as coloured
areas, as illustrated in Fig. 1. 

Fig. 1. Diagnosis areas in hand measurements for healthy, fibromyalgia and
neck pain subjects.

Fig. 1 shows that FAM data can be clustered by the SOM.
Note that the clustering was generated through self-
organization, i.e., the groups were formed “naturally”.

As discussed earlier, the interpretation of the analysis must be
unambiguous. So, the reasons behind clusterization can be
understood on the basis of the component planes of the first
12 dimensions of the reference vector im , expressing the
parameters of the FAM data. Fig. 2 presents the component
planes for the dimensions in wrist measurements.

Fig. 2. Component planes of the SOM

The component planes presented in Fig. 2 clearly indicate
which parameters differ from those illustrated in Fig. 1.

In practice, the analysis is made by preprocessing the
measured FAM values and comparing the 12 FAM
parameters with the corresponding dimensions on the
reference vectors to produce the best match. Next, a diagnosis
index is defined by comparing the last three dimensions of the
previously defined best match and selecting the highest index
for the final result of the diagnosis. Fig. 3 illustrates the
visualization of the results using coloured areas.
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Fig. 3. The measurement (right) and the corresponding diagnosis plane (left)

The data shown in Fig. 3 can be interpreted as representing a
healthy person. If more information for the diagnosis is
required, the component plane shows the parameters of the
measurements. Furthermore, the parameter values can be
traced back to the real FAM current values on the SOM
plane, which is sometimes useful.

IV. DISCUSSION

The problem with the FAM method was that the
interpretation of measurement results was too dependent on
the personal judgments of physiotherapists who were familiar
with the method. To circumvent this limitation, it was
necessary to develop a form of numerical analysis to assist in
the final analysis of the results.

FAM measurements can be used to describe the physiological
state of the human body. However, the results leave room for
interpretation. For example, the coloured area in Fig. 1
indicates fibromyalgia in the middle of a healthy area. This
may indicate that the data comes from a healthy person, who
has been incorrectly diagnosed with fibromyalgia. Another
source of error are invisible factors affecting fibromyalgia.
Problems such as these suggest that the current realization of
the FAM method is rather limited. As the applied frequencies
were selected experimentally, special attention should be paid
to developing the parameters to obtain more accurate and
reliable results. 

The neural network analysis utilizing the self-organization
algorithm appeared to be highly suitable for analyzing and
interpreting the FAM measurements. Moreover, the reference
values (typical values for the different diagnosis groups) can
be easily defined on the basis of the component planes of the
SOM. Furthermore, a suitable preprocessing method to
integrate the SOM analysis and the physiotherapist’s opinion
strengthen the final interpretation and analysis of the patient's
physiological state.

V. CONCLUSION

This study shows that FAM measurements provide essential
information on the physiological state of the human body and
can be analyzed using the proposed method. The method

applies Self-Organizing Maps to produce an easily
interpretable analysis. The method has potential as a novel
basic tool for physiotherapists.
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